Point Cloud Library (PCL) 1.12.1
sac_model_circle3d.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2012-, Open Perception, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of the copyright holder(s) nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38#pragma once
39
40#include <pcl/sample_consensus/sac_model.h>
41#include <pcl/sample_consensus/model_types.h>
42
43namespace pcl
44{
45 /** \brief SampleConsensusModelCircle3D defines a model for 3D circle segmentation.
46 *
47 * The model coefficients are defined as:
48 * - \b center.x : the X coordinate of the circle's center
49 * - \b center.y : the Y coordinate of the circle's center
50 * - \b center.z : the Z coordinate of the circle's center
51 * - \b radius : the circle's radius
52 * - \b normal.x : the X coordinate of the normal's direction
53 * - \b normal.y : the Y coordinate of the normal's direction
54 * - \b normal.z : the Z coordinate of the normal's direction
55 *
56 * \author Raoul Hoffmann, Karol Hausman, Radu B. Rusu
57 * \ingroup sample_consensus
58 */
59 template <typename PointT>
61 {
62 public:
68
72
73 using Ptr = shared_ptr<SampleConsensusModelCircle3D<PointT> >;
74 using ConstPtr = shared_ptr<const SampleConsensusModelCircle3D<PointT> >;
75
76 /** \brief Constructor for base SampleConsensusModelCircle3D.
77 * \param[in] cloud the input point cloud dataset
78 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
79 */
81 bool random = false)
82 : SampleConsensusModel<PointT> (cloud, random)
83 {
84 model_name_ = "SampleConsensusModelCircle3D";
85 sample_size_ = 3;
86 model_size_ = 7;
87 }
88
89 /** \brief Constructor for base SampleConsensusModelCircle3D.
90 * \param[in] cloud the input point cloud dataset
91 * \param[in] indices a vector of point indices to be used from \a cloud
92 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
93 */
95 const Indices &indices,
96 bool random = false)
97 : SampleConsensusModel<PointT> (cloud, indices, random)
98 {
99 model_name_ = "SampleConsensusModelCircle3D";
100 sample_size_ = 3;
101 model_size_ = 7;
102 }
103
104 /** \brief Empty destructor */
106
107 /** \brief Copy constructor.
108 * \param[in] source the model to copy into this
109 */
112 {
113 *this = source;
114 model_name_ = "SampleConsensusModelCircle3D";
115 }
116
117 /** \brief Copy constructor.
118 * \param[in] source the model to copy into this
119 */
122 {
124 return (*this);
125 }
126
127 /** \brief Check whether the given index samples can form a valid 2D circle model, compute the model coefficients
128 * from these samples and store them in model_coefficients. The circle coefficients are: x, y, R.
129 * \param[in] samples the point indices found as possible good candidates for creating a valid model
130 * \param[out] model_coefficients the resultant model coefficients
131 */
132 bool
133 computeModelCoefficients (const Indices &samples,
134 Eigen::VectorXf &model_coefficients) const override;
135
136 /** \brief Compute all distances from the cloud data to a given 3D circle model.
137 * \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to
138 * \param[out] distances the resultant estimated distances
139 */
140 void
141 getDistancesToModel (const Eigen::VectorXf &model_coefficients,
142 std::vector<double> &distances) const override;
143
144 /** \brief Compute all distances from the cloud data to a given 3D circle model.
145 * \param[in] model_coefficients the coefficients of a 3D circle model that we need to compute distances to
146 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
147 * \param[out] inliers the resultant model inliers
148 */
149 void
150 selectWithinDistance (const Eigen::VectorXf &model_coefficients,
151 const double threshold,
152 Indices &inliers) override;
153
154 /** \brief Count all the points which respect the given model coefficients as inliers.
155 *
156 * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
157 * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
158 * \return the resultant number of inliers
159 */
160 std::size_t
161 countWithinDistance (const Eigen::VectorXf &model_coefficients,
162 const double threshold) const override;
163
164 /** \brief Recompute the 3d circle coefficients using the given inlier set and return them to the user.
165 * @note: these are the coefficients of the 3d circle model after refinement (e.g. after SVD)
166 * \param[in] inliers the data inliers found as supporting the model
167 * \param[in] model_coefficients the initial guess for the optimization
168 * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
169 */
170 void
171 optimizeModelCoefficients (const Indices &inliers,
172 const Eigen::VectorXf &model_coefficients,
173 Eigen::VectorXf &optimized_coefficients) const override;
174
175 /** \brief Create a new point cloud with inliers projected onto the 3d circle model.
176 * \param[in] inliers the data inliers that we want to project on the 3d circle model
177 * \param[in] model_coefficients the coefficients of a 3d circle model
178 * \param[out] projected_points the resultant projected points
179 * \param[in] copy_data_fields set to true if we need to copy the other data fields
180 */
181 void
182 projectPoints (const Indices &inliers,
183 const Eigen::VectorXf &model_coefficients,
184 PointCloud &projected_points,
185 bool copy_data_fields = true) const override;
186
187 /** \brief Verify whether a subset of indices verifies the given 3d circle model coefficients.
188 * \param[in] indices the data indices that need to be tested against the 3d circle model
189 * \param[in] model_coefficients the 3d circle model coefficients
190 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
191 */
192 bool
193 doSamplesVerifyModel (const std::set<index_t> &indices,
194 const Eigen::VectorXf &model_coefficients,
195 const double threshold) const override;
196
197 /** \brief Return a unique id for this model (SACMODEL_CIRCLE3D). */
198 inline pcl::SacModel
199 getModelType () const override { return (SACMODEL_CIRCLE3D); }
200
201 protected:
204
205 /** \brief Check whether a model is valid given the user constraints.
206 * \param[in] model_coefficients the set of model coefficients
207 */
208 bool
209 isModelValid (const Eigen::VectorXf &model_coefficients) const override;
210
211 /** \brief Check if a sample of indices results in a good sample of points indices.
212 * \param[in] samples the resultant index samples
213 */
214 bool
215 isSampleGood(const Indices &samples) const override;
216
217 private:
218 /** \brief Functor for the optimization function */
219 struct OptimizationFunctor : pcl::Functor<double>
220 {
221 /** Functor constructor
222 * \param[in] indices the indices of data points to evaluate
223 * \param[in] estimator pointer to the estimator object
224 */
225 OptimizationFunctor (const pcl::SampleConsensusModelCircle3D<PointT> *model, const Indices& indices) :
226 pcl::Functor<double> (indices.size ()), model_ (model), indices_ (indices) {}
227
228 /** Cost function to be minimized
229 * \param[in] x the variables array
230 * \param[out] fvec the resultant functions evaluations
231 * \return 0
232 */
233 int operator() (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
234 {
235 for (int i = 0; i < values (); ++i)
236 {
237 // what i have:
238 // P : Sample Point
239 Eigen::Vector3d P =
240 (*model_->input_)[indices_[i]].getVector3fMap().template cast<double>();
241 // C : Circle Center
242 Eigen::Vector3d C (x[0], x[1], x[2]);
243 // N : Circle (Plane) Normal
244 Eigen::Vector3d N (x[4], x[5], x[6]);
245 // r : Radius
246 double r = x[3];
247
248 Eigen::Vector3d helperVectorPC = P - C;
249 // 1.1. get line parameter
250 //float lambda = (helperVectorPC.dot(N)) / N.squaredNorm() ;
251 double lambda = (-(helperVectorPC.dot (N))) / N.dot (N);
252 // Projected Point on plane
253 Eigen::Vector3d P_proj = P + lambda * N;
254 Eigen::Vector3d helperVectorP_projC = P_proj - C;
255
256 // K : Point on Circle
257 Eigen::Vector3d K = C + r * helperVectorP_projC.normalized ();
258 Eigen::Vector3d distanceVector = P - K;
259
260 fvec[i] = distanceVector.norm ();
261 }
262 return (0);
263 }
264
266 const Indices &indices_;
267 };
268 };
269}
270
271#ifdef PCL_NO_PRECOMPILE
272#include <pcl/sample_consensus/impl/sac_model_circle3d.hpp>
273#endif
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
SampleConsensusModelCircle3D defines a model for 3D circle segmentation.
SampleConsensusModelCircle3D(const PointCloudConstPtr &cloud, const Indices &indices, bool random=false)
Constructor for base SampleConsensusModelCircle3D.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given 3d circle model coefficients.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the 3d circle model.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModelCircle3D(const SampleConsensusModelCircle3D &source)
Copy constructor.
pcl::SacModel getModelType() const override
Return a unique id for this model (SACMODEL_CIRCLE3D).
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given 3D circle model.
~SampleConsensusModelCircle3D()
Empty destructor.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the 3d circle coefficients using the given inlier set and return them to the user.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Compute all distances from the cloud data to a given 3D circle model.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid 2D circle model, compute the model coefficient...
SampleConsensusModelCircle3D(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModelCircle3D.
SampleConsensusModelCircle3D & operator=(const SampleConsensusModelCircle3D &source)
Copy constructor.
SampleConsensusModel represents the base model class.
Definition: sac_model.h:70
shared_ptr< SampleConsensusModel< PointT > > Ptr
Definition: sac_model.h:77
unsigned int sample_size_
The size of a sample from which the model is computed.
Definition: sac_model.h:588
typename PointCloud::ConstPtr PointCloudConstPtr
Definition: sac_model.h:73
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition: sac_model.h:556
std::string model_name_
The model name.
Definition: sac_model.h:550
unsigned int model_size_
The number of coefficients in the model.
Definition: sac_model.h:591
typename PointCloud::Ptr PointCloudPtr
Definition: sac_model.h:74
shared_ptr< const SampleConsensusModel< PointT > > ConstPtr
Definition: sac_model.h:78
@ K
Definition: norms.h:54
SacModel
Definition: model_types.h:46
@ SACMODEL_CIRCLE3D
Definition: model_types.h:50
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Base functor all the models that need non linear optimization must define their own one and implement...
Definition: sac_model.h:679
A point structure representing Euclidean xyz coordinates, and the RGB color.